
Security Assessment

BlackFort Group
CertiK Verified on Oct 13th, 2022

Executive Summary

Vulnerability Summary

3 Critical 3 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

3 Major 2 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

6 Medium 5 Resolved, 1 Partially Resolved
Medium risks may not pose a direct risk to users’

funds, but they can affect the overall functioning of a

platform.

17 Minor 15 Resolved, 2 Partially Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

13 Informational 12 Resolved, 1 Partially Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY BLACKFORT GROUP

CertiK Verified on Oct 13th, 2022

BlackFort Group

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

ERC-721, NFT

ECOSYSTEM

Ethereum

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 10/13/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/BlackFortGroup/blackfort-network

...View All

COMMITS
base: 92a1060005dd69ad2e63046cc6ff59d6eae4e1f7

update: d5706ad2c7550f481b9f480af76e20e2da57fbf1

...View All

42
Total Findings

37
Resolved

0
Mitigated

4
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/BlackFortGroup/blackfort-network
https://github.com/BlackFortGroup/blackfort-network/tree/92a1060005dd69ad2e63046cc6ff59d6eae4e1f7
https://github.com/BlackFortGroup/blackfort-network/tree/d5706ad2c7550f481b9f480af76e20e2da57fbf1

TABLE OF CONTENTS BLACKFORT GROUP

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

ACH-01 : Function `init()` can be called more than once

BFG-01 : No bound on the amount a `validatorAccount` can mint

BFG-02 : Centralization Related Risks

BFG-03 : Potential Reentrancy Attack

BFG-04 : Entire `burntAmount` for account is checked against `minted` amount for one `tokenId`

BFG-05 : Unused Return Value

BFG-06 : Missing Zero Address Validation

BFG-07 : Shadowing State Variable

BFG-08 : Unchecked Value Of `address.call()`

BFG-09 : Check Effect Interaction Pattern Violated

BFG-10 : `totalSupply` is not updated with every token burn

BFG-11 : bool should be returned and checked by function `accept()` in `CandidateHub`

BFG-12 : Missing Input Validation

BXA-01 : `super.mint` incorrectly called in `burn()` function

BXS-01 : Underflow Vulnerability through use of signed integers

DHB-01 : Anyone can call `burnExtraFor()`

NHB-01 : `burntAmount` not updated correctly for `to` and `from` addresses

NHB-02 : No Validation Check on the function `unlock()` and `lock()`

PHB-01 : Wrong index in the loop of removing option

PHB-02 : Incorrect condition in modifier `pollNotOpened`

PHB-03 : `pollExists` modifier makes functions unusable if tokens are burned

PHB-04 : Deadline Can Be Updated To a Block Before Previous Deadline

PHB-05 : Locked Ether

PHB-06 : User May overpay in `start()` function

SAB-01 : Lack Of Access Control

TABLE OF CONTENTS BLACKFORT GROUP

SAB-02 : Hardcoded Address

SAB-03 : modifier does not check for intended functionality

SBF-01 : No Validation for String input in `approve()`

SHB-01 : Lack of Validation for `byBlock`

BFG-16 : Unlocked Compiler Version

BFG-17 : Missing Emit Events

BXA-03 : `burn()` and `destroy()` have the same intended utility for two distinct parties

CHB-01 : Logic issue when adding users to candidates

EMB-01 : Dead Code

NHB-04 : Unclear If Contract is Upgradeable

PHB-08 : `mint()` function does not take a fee

SAB-04 : Declaration Naming Convention

SAB-05 : Function `set_SYSTEM_CONTRACT_ADDRESS` defined before modifiers

SBF-02 : No refund if caller is not validator

SBF-03 : Race Condition for Third Party Addresses

SHB-02 : `_timesSlashed` updated to 2 the first time `slash()` called

VHF-01 : Validators can set their own commission

Optimizations

BFG-13 : Improper Usage of `public` and `external` Type

BFG-14 : Unnecessary Use of SafeMath

BFG-15 : Non-adherence to `AccessControl` instructions

BXA-02 : Multiple checks an address is not in blacklist

DHB-02 : Unused State Variable

NHB-03 : `constructor` sets `_initialized` to `true` on deploy

PHB-07 : modifier `pollExists` checked twice in function call

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS BLACKFORT GROUP

CODEBASE BLACKFORT GROUP

Repository

https://github.com/BlackFortGroup/blackfort-network

Commit

base: 92a1060005dd69ad2e63046cc6ff59d6eae4e1f7

update: d5706ad2c7550f481b9f480af76e20e2da57fbf1

CODEBASE BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network
https://github.com/BlackFortGroup/blackfort-network/tree/92a1060005dd69ad2e63046cc6ff59d6eae4e1f7
https://github.com/BlackFortGroup/blackfort-network/tree/d5706ad2c7550f481b9f480af76e20e2da57fbf1

AUDIT SCOPE BLACKFORT GROUP

33 files audited 11 files with Acknowledged findings 22 files with Resolved findings

ID File SHA256 Checksum

BXA contracts/BXP/BXP20Asset.sol
91eaf81501802aab0b4dd6367aa0ce9fed9730238190284718

5ae871c9d06fa7

BXS
contracts/extensions/BXP20SystemRe

wardToken.sol

86ee21ee13ec3a5f39641530e843e8dec4476c6c9689e908b

777a364bd58a430

SAB
contracts/extensions/SystemAccess.so

l

b3564c1391a184025aa5093ffb6328f6efd5c9871058ee0bddd

3fab2ea689962

ACH contracts/AccessControlHub.sol
43ac4271533e065c7b8f73c2494f1f0586349bc800709aa3c7

b12983954a073d

CHB contracts/CandidateHub.sol
9611aab885cd4125cc51e4cc122049604513d85934fdf0f160

5cc3c9d4eec958

NHB contracts/NodeHub.sol
235bc745f852a4c425be9028ddd6b3021b057ff5a4acc6cc4ea

d769aefd952de

PHB contracts/PollHub.sol
112191b2daa1becc5a3af8b9ab7bc705e06e5c7766b161c41

25d623c1ef846ed

SHB contracts/SlashingHub.sol
b8022459a840ac4aed9bfe6cce0ea30037a6b744cdc032bab

89110dc84162800

SBF contracts/System.sol
b3309306a6b3fa4f1b7c8423572d4eb111ee7c0dec325c38d9

ba0680a3f99f37

VHB contracts/VoteHub.sol
149464ae4821e5a4ce4f404dd93086c0349bd3d7432125e12

298fe65490c7a16

VHF contracts/ValidatorHub.sol
5452fa69b5be29253a0eb9d38d9ab67e9595da1455a2a936d

f3202dd85ab751f

IBX contracts/BXP/interfaces/IBXP165.sol
46e3031b0934c54195519dffb311972d1abbdf4e3efad62d891

d322e8dc2544f

IBP contracts/BXP/interfaces/IBXP20.sol
a080b437ed1f43e3ddf334de3366c2bff0d81641dc9931919c3

176133227fee0

IBM
contracts/BXP/interfaces/IBXP20Metad

ata.sol

78e894507f46f836a8920eebaa4da0476903b5cd36fc144270

1b903d018d9fd4

AUDIT SCOPE BLACKFORT GROUP

ID File SHA256 Checksum

IBB contracts/BXP/interfaces/IBXP721.sol
ce889aa7229eb27a842bae079741ed95b71c447bce42f5740

5d1f13b33318936

IBE
contracts/BXP/interfaces/IBXP721Enu

merable.sol

f08164b44f09c9827a4a972fe81b3e9f8c6c9ec4a9f4113b573

eec19bcd8b48c

IBF
contracts/BXP/interfaces/IBXP721Meta

data.sol

07fa4bef7c93d14738884229e0db351dfa9e52de8ada7b7d6f8

91e6421ec55f3

IBR
contracts/BXP/interfaces/IBXP721Rec

eiver.sol

c7d045ae89e980f94e8e824c0eee4683e2da75c5a1b37ad0f5

f9093e856f394a

BXX contracts/BXP/BXP165.sol
a16c145ab5181cab12ea4ddfa65d4583e452d003733867ab8

086e4c4ec494189

BXF contracts/BXP/BXP20.sol
a40f0822af198f39c6c74628fafc75d5b95836808281025b17b

1a511794b234d

BXG contracts/BXP/BXP721.sol
93ebce44dd746466133d47e1ac9de548b33e4d5792f9f674be

377e4e07dd8b0f

BXE contracts/BXP/BXP721Enumerable.sol
01b5a3ede3d9cd07d7508f67285d75d9c00a239599f55cdc03

5c92cae3d5fde2

WBX contracts/BXP/WBXN.sol
987a436b98306363e4514acc99939345e73f7604f5ce58dcf7

8b5a28f6c1e3e4

EMB contracts/extensions/ExtendedMath.sol
31aa3b882ac68c9bcc9c2c620c5214b87994870ddb75b9433

e3ba253e77bcc0d

IAC
contracts/interfaces/IAccessControlHu

b.sol

36f12685e948197e1e5230aaf55e687af9253ff3ef2cf48ae28e

2149ccde369a

IBS
contracts/interfaces/IBXP20SystemRe

wardToken.sol

36ae6b29c10b95e3d43ddd157650c2c5d7d5a32d4c88586de

db50e790b407c42

IDH contracts/interfaces/IDelegatorHub.sol
f3fdec93fc4b407ff2d75b1b0756d7ef62369b644b07471a4aa4

90d971e7431d

INH contracts/interfaces/INodeHub.sol
d793c1ca9cda322876da72411bc2635e78e164bccc58ee911

cbf88058eeea55e

ISH contracts/interfaces/ISlashingHub.sol
d3dedf3c64bdf7765dcd614c2f521543b536e3eb3943bf5d394

9c393dc2038d2

ISB contracts/interfaces/ISystem.sol
3a5fbcd3927e4a85287284282d9f683f7ceb4fb25715bb02e71

ce43681c2edea

AUDIT SCOPE BLACKFORT GROUP

ID File SHA256 Checksum

IVH contracts/interfaces/IValidatorHub.sol
785cd121fb7d5a9403217237fd81febda5f77c155b8e6046698

46ab77f5f8689

IVB contracts/interfaces/IVoteHub.sol
7de61fd88f6fc231dd0f6d789279b6b8fc84634edeb8c9acac1

3f2155337940e

DHB contracts/DelegatorHub.sol
0b3370ed8aeefbfc23c055f6af7565efb2d413307820a2ecab1

ebf85061c12f0

AUDIT SCOPE BLACKFORT GROUP

APPROACH & METHODS BLACKFORT GROUP

This report has been prepared for BlackFort Group to discover issues and vulnerabilities in the source code of the BlackFort

Group project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices.
We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BLACKFORT GROUP

FINDINGS BLACKFORT GROUP

This report has been prepared to discover issues and vulnerabilities for BlackFort Group. Through this audit, we have

uncovered 42 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

ACH-01
Function init() Can Be Called More

Than Once

Inconsistency,

Control Flow
Minor Resolved

BFG-01
No Bound On The Amount A

validatorAccount Can Mint
Control Flow Critical Resolved

BFG-02 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

BFG-03 Potential Reentrancy Attack Volatile Code Major Resolved

BFG-04

Entire burntAmount For Account Is

Checked Against minted Amount For

One tokenId

Logical Issue Medium Resolved

BFG-05 Unused Return Value Volatile Code Minor Resolved

BFG-06 Missing Zero Address Validation Volatile Code Minor Resolved

BFG-07 Shadowing State Variable Coding Style Minor Resolved

BFG-08 Unchecked Value Of address.call() Logical Issue Minor Resolved

BFG-09
Check Effect Interaction Pattern

Violated
Logical Issue Minor Partially Resolved

FINDINGS BLACKFORT GROUP

42
Total Findings

3
Critical

3
Major

6
Medium

17
Minor

13
Informational

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659623659664
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659636013808
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589027
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709916
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659637441204
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709911
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709923
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709924
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659473296250
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659559935045

ID Title Category Severity Status

BFG-10
totalSupply Is Not Updated With

Every Token Burn
Language Specific Minor Resolved

BFG-11

Bool Should Be Returned And Checked

By Function accept() In

CandidateHub

Inconsistency Minor Resolved

BFG-12 Missing Input Validation Logical Issue Minor Resolved

BXA-01
super.mint Incorrectly Called In

burn() Function
Logical Issue Critical Resolved

BXS-01
Underflow Vulnerability Through Use Of

Signed Integers

Logical Issue,

Mathematical

Operations

Minor Partially Resolved

DHB-01 Anyone Can Call burnExtraFor() Logical Issue Minor Resolved

NHB-01
burntAmount Not Updated Correctly

For to And from Addresses

Logical Issue,

Inconsistency
Medium Resolved

NHB-02
No Validation Check On The Function

unlock() And lock()
Logical Issue Minor Resolved

PHB-01
Wrong Index In The Loop Of Removing

Option
Logical Issue Major Resolved

PHB-02
Incorrect Condition In Modifier

pollNotOpened
Logical Issue Medium Resolved

PHB-03
pollExists Modifier Makes Functions

Unusable If Tokens Are Burned
Logical Issue Medium Resolved

PHB-04
Deadline Can Be Updated To A Block

Before Previous Deadline
Logical Issue Medium Resolved

PHB-05 Locked Ether Language Specific Minor Resolved

PHB-06
User May Overpay In start()

Function
Logical Issue Minor Resolved

FINDINGS BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659566966964
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659639046009
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659645911932
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659474277887
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659566127359
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659472256397
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659644901913
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659642852611
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659557630198
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659475105965
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659647497202
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659649278220
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709921
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659558586118

ID Title Category Severity Status

SAB-01 Lack Of Access Control Control Flow Critical Resolved

SAB-02 Hardcoded Address Volatile Code Minor Resolved

SAB-03
Modifier Does Not Check For Intended

Functionality

Coding Style,

Language Specific
Minor Resolved

SBF-01
No Validation For String Input In

approve()
Data Flow Medium Partially Resolved

SHB-01 Lack Of Validation For byBlock Volatile Code Minor Resolved

BFG-16 Unlocked Compiler Version Compiler Error Informational Resolved

BFG-17 Missing Emit Events Language Specific Informational Resolved

BXA-03

burn() And destroy() Have The

Same Intended Utility For Two Distinct

Parties

Coding Style,

Inconsistency
Informational Resolved

CHB-01
Logic Issue When Adding Users To

Candidates
Logical Issue Informational Partially Resolved

EMB-01 Dead Code Coding Style Informational Resolved

NHB-04 Unclear If Contract Is Upgradeable Control Flow Informational Resolved

PHB-08
mint() Function Does Not Take A

Fee
Language Specific Informational Resolved

SAB-04 Declaration Naming Convention Coding Style Informational Resolved

SAB-05

Function

set_SYSTEM_CONTRACT_ADDRESS

Defined Before Modifiers

Coding Style Informational Resolved

FINDINGS BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589026
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659567591416
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659568108253
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659631222588
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659560457114
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657641433887
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464036489
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659564524860
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659626560414
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464036488
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659640761308
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659648346769
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464581932
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659568371975

ID Title Category Severity Status

SBF-02 No Refund If Caller Is Not Validator Logical Issue Informational Resolved

SBF-03
Race Condition For Third Party

Addresses
Control Flow Informational Resolved

SHB-02
_timesSlashed Updated To 2 The

First Time slash() Called
Inconsistency Informational Resolved

VHF-01
Validators Can Set Their Own

Commission
Logical Issue Informational Resolved

FINDINGS BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659475565581
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659631609362
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659645543880
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659561068331

ACH-01 FUNCTION init() CAN BE CALLED MORE THAN ONCE

Category Severity Location Status

Inconsistency, Control Flow Minor contracts/AccessControlHub.sol: 31~32 Resolved

Description

The function init() can only be called by the constant address DEFAULT_ADMIN_ROLE_ADDRESS , in which case the internal

function _setupRole() is directly called from the inherited AccessControl contract to transfer the role

DEFAULT_ADMIN_ROLE to DEFAULT_ADMIN_ROLE_ADDRESS . If this role is ever renounced or granted to another address,

DEFAULT_ADMIN_ROLE_ADDRESS can be reinstated to this role at any time.

Recommendation

We recommend considering if this is the intended effect. If so, no action is needed. Otherwise, consider using the

constructor() to instead set DEFAULT_ADMIN_ROLE as DEFAULT_ADMIN_ROLE_ADDRESS or adding in extra validation that

does not allow this function to be called at any time. A validation check that DEFAULT_ADMIN_ROLE is not already

DEFAULT_ADMIN_ROLE_ADDRESS is recommended for optimization.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

162b66e39d2de2f8e5b1c38cb3e2d320cf128691.

ACH-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659623659664
https://github.com/BlackFortGroup/blackfort-network/commit/162b66e39d2de2f8e5b1c38cb3e2d320cf128691

BFG-01 NO BOUND ON THE AMOUNT A validatorAccount CAN

MINT

Category Severity Location Status

Control Flow Critical contracts/DelegatorHub.sol: 76~77; contracts/ValidatorHub.sol: 66~67 Resolved

Description

If mint() is called with an address validatorAccount that is in the set of _validators in ValidatorHub , then the

caller can send as many DelegatorHub tokens as they want to the validatorAccount address. These tokens can then

be burned by the validatorAccount , which calls the transferTo() function in the System contract. This function sends

an equal amount of native BXN tokens to the validatorAccount . Note mint() can only be called by the

SYSTEM_CONTRACT_ADDRESS ; since SYSTEM_CONTRACT_ADDRESS can be changed by anyone, this vulnerability is critical.

Recommendation

We recommend protecting this function so that external users may not call it themselves.

Alleviation

[CertiK] : The team heeded the recommendation and made the changes outlined above by resolving finding SAB-01.

BFG-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659636013808

BFG-02 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization

/ Privilege
Major

contracts/AccessControlHub.sol: 31, 44, 51; contracts/BX

P/BXP20Asset.sol: 30, 37, 44, 56, 61, 71~72, 75~76, 83; con

tracts/CandidateHub.sol: 39, 50, 65; contracts/NodeHub.so

l: 79, 191, 197; contracts/PollHub.sol: 73~74, 79~80, 84~85,

89~90, 94~95, 110, 118, 130~131, 135~136, 143, 147, 159; c

ontracts/SlashingHub.sol: 30; contracts/System.sol: 34, 84

~85; contracts/ValidatorHub.sol: 70~71, 77~78; contracts/V

oteHub.sol: 24, 32, 38; contracts/extensions/BXP20System

RewardToken.sol: 37

Acknowledged

Description

In the contract AccessControlHub the role DEFAULT_ADMIN_ROLE_ADDRESS has authority over the functions shown in the

diagram below.
Any compromise to the DEFAULT_ADMIN_ROLE_ADDRESS account may allow the hacker to take advantage of

this authority and change the address for privileged roles such as ACCESS_CONTROL_MANAGER_ROLE , and any of the roles in

contracts that inherit from SystemAccess contract.

In addition, any compromise to the ACCESS_CONTROL_MANAGER_ROLE account may allow the hacker to enable or disable the

transfer() function for certain contracts.

Function Function CallsAuthenticated Role

init _setupRoleDEFAULT_ADMIN_ROLE_ADDRESS

In the contract System.sol , any compromise to the SYSTEM_MANAGER_ROLE account may allow the hacker to approve any

account to use the transferTo() function to send any amount of native token to an address of their choosing. Additionally,

an address with the VOTE_MINT_ROLE can use this same function to mint any amount of VoteHub tokens to any address.

In the contract NodeHub , any compromise to the NODE_MANAGER_ROLE account may allow the hacker to set

_baseTokenURI to any string and use the lock() and unlock() functions on the underlying token to prevent transfers.

In the contract PollHub the role _owner has authority over the functions shown in the diagram below.
Any compromise to

the _owner account may allow the hacker to take advantage of this authority, modify the information of poll such as its poll

options and its deadline. Note that the _owner in this case refers to the owner of the specified tokenId representing a

poll. Each instance of a poll represents a centralization risk.

In addition, any compromise to the POLL_MANAGER_ROLE account may allow the hacker to reset _baseTokenURI and

change a poll's price and fee to an unwanted amount.

BFG-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589027

Authenticated Role

Function

Function

Function

Function

Function

Function

Function

Function Calls

_owner

updateOption

updateDeadlineBlock

removeOption

burn

addOption

start

updateTitle

optionsCountOf

In the contract BXP20SystemRewardToken the role SYSTEM_CONTRACT_ADDRESS has authority over the functions shown in

the diagram below.
Any compromise to the SYSTEM_CONTRACT_ADDRESS account may allow the hacker to take advantage of

this authority and mint any amount of tokens to any address within the contracts that inherit from this base; that is the

DelegatorHub and ValidatorHub contracts

BFG-02 BLACKFORT GROUP

Function Function CallsAuthenticated Role

mint _mintSYSTEM_CONTRACT_ADDRESS

In the contract BXP20Asset , which inherits from the contract BlackList , any compromise to the

ASSET_BLACKLIST_MANAGER_ROLE account may allow the hacker to add addresses to the blacklist. The contract

BXP20Asset also inherits from the contract Manageable ; any compromise to the ASSET_MANAGER_ROLE account may allow

the hacker to mint and burn any amount of tokens for any address.

The role VALIDATOR_MANAGER_ROLE has control over several contracts. In the contract CandidateHub , any compromise to

the VALIDATOR_MANAGER_ROLE account may allow a hacker to add candidates to the validator set, remove candidates

maliciously and set requiredAmount to any amount. In the contract SlashingHub , compromise to this role allows a hacker

to use the slash() function to penalize rewards for a validator address. In the contract ValidatorHub , this may also allow

the hacker to use the function kick() to remove any validator from the list.

In the contract VoteHub , any compromise to the VOTE_MINT_ROLE account may allow the hacker to mint any amount of

VoteHub tokens to any account and any compromise to the VOTE_BURN_ROLE account may allow the hacker to burn any

amount of VoteHub tokens. In addition, any compromise to the VOTE_SPENDER_ROLE may allow the hacker to spend all the

VoteHub tokens belonging to any account.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets.
Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

BFG-02 BLACKFORT GROUP

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[BlackFort Group] : Issue acknowledged. I will fix the issue in the future, which will not be included in this audit

engagement.

BFG-02 BLACKFORT GROUP

BFG-03 POTENTIAL REENTRANCY ATTACK

Category Severity Location Status

Volatile

Code
Major

contracts/CandidateHub.sol: 54, 56; contracts/NodeHub.sol: 149~150, 247

~248; contracts/System.sol: 82~83
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

Such an attack can come from the transfer of native tokens such as ETH but can also be a risk with token contracts

conforming to the ERC721 , ERC777 and ERC1155 standard in which a contract that is transferred these kinds of tokens

must have a base that allows for holding such tokens. This base makes a callback to the token contracts which, should this

callback function be modified, may contain malicious code.

Potential Reentrancy Involving Ether

External call(s)

54 (bool result,) = account.call{value:amount}("");

State variables written after the call(s)

56 _candidatesBonds[account] = _candidatesBonds[account].sub(amount);

External call(s)

82 (bool result,) = account.call{value:amount}("");

State variables written after the call(s)

83 _spentAmount[msg.sender] = _spentAmount[msg.sender].add(amount);

External call(s)

BFG-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709916

247 _burnFrom(from, reward - burnedByFrom)

State variables written after the call(s)

250 _burntAmount[from] -= reward;

251 _burntAmount[to] += reward;

Potential Reentrancy Involving ERC721 tokens (BXP721)

External call(s)

165 _mint(owner, tokenId);

State variables written after the call(s)

172 __delegators[tokenId] = address(0);

173 _rewardShares[tokenId] = nodeTypes[i].rewardShare;

174 _mintedAtBlock[tokenId] = block.number;

175 _nodeType[tokenId] = i;

176

177 nodeTypes[i].quantity = nodeTypes[i].quantity.sub(1);

178

179 _depositedAmount[owner] =

_depositedAmount[owner].add(nodePrice);

180 amount = amount.sub(nodePrice);

181

182 _tokenIdTracker.increment();

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

09d4d6a9dc5883cacd83fcd8053b2dc78196955a.

BFG-03 BLACKFORT GROUP

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/BlackFortGroup/blackfort-network/commit/09d4d6a9dc5883cacd83fcd8053b2dc78196955a

BFG-04 ENTIRE burntAmount FOR ACCOUNT IS CHECKED

AGAINST minted AMOUNT FOR ONE tokenId

Category Severity Location Status

Logical

Issue
Medium

contracts/DelegatorHub.sol: 57~58, 82~83; contracts/NodeHub.sol: 23

2~233
Resolved

Description

The function burnExtraFor() compares the entire amount a delegatorAccount (owner of a given tokenId) has burned

of the BXP20 DelegatorHub token to the amount that is minted corresponding to one BXP721 token. If the minted

amount corresponding to the tokenId is larger than the total burntAmount corresponding to the account, then the

difference between the values is burned. These values do not necessarily correspond to one another.

As a simplified example, say that one token owner owns two tokens, token 1 and token 2. Token 1 has a corresponding

reward amount of 10 DelegatorHub tokens, and token 2 has a corresponding reward of 20 DelegatorHub tokens. The

owner burns the corresponding DelegatorHub tokens directly through the burn() function, and the burntAmount is now

10. If someone calls burnExtraFor() on token 2, the minted amount will be 20 while burntAmount will be 10, so the

owner will now only have 10 tokens burned corresponding to token 2. After, burntAmount for the owner is 20, and

burnExtraFor() will no longer burn DelegatorHub tokens.

Additionally, since the function burnExtraFor() relies on the return value of mintedWith() rather than the actual token

balance corresponding to a given address, there is no way for the user to burn or transfer these tokens.

A similar issue occurs within the hook _beforeTokenTransfer() in the NodeHub contract.

Recommendation

We recommend either comparing a minted and burned amount for one given token ID or comparing a total minted and

burned amount for one given address, dependent on context. Moreover, we recommend updating a token owner's balance

to reflect the corresponding reward tokens associated with owning a BXP721 NodeHub token.

Alleviation

[CertiK] : See below for the team's explanation on the validity of the mechanism.

[BlackFort Group] : "The idea of burnExtraFor method is to burn exceeding amount of not yet claimed DelegatorHub

tokens for exact token before performing re/un-delegation. During redelegation burntAmount of current owner decreases by

total value mintedWith the NodeHub token. On NodeHub token transfer for logic security NodeHub token is undelegated in

order to return earned amount of tokens.

I can continue your example with further transfer example. We have total burntAmount for current owner 20 and he wants to

transfer token #2 to someone else. As far burntAmount is 20 and mintedWith for token #2 is also 20, nothing will be burned

BFG-04 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659637441204

by burnExtraFor method and NodeHub token #2 will be undelegated before the transfer. While undelegate total burntAmount

will be decreased by mintedWith of #2 which is 20 so it makes burntAmount of current address on DelegatorHub equal to 0

which allows him to claim rest 10 he had with token #1

Concept relies on differences of income from multiple owned tokens and total spent amount by current owner. When we do

manipulation with token, we have to reflect it on total burntAmount to keep calculations correct. It works same way on

NodeHub, ValidatorHub and DelegatorHub."

BFG-04 BLACKFORT GROUP

BFG-05 UNUSED RETURN VALUE

Category Severity Location Status

Volatile

Code
Minor

contracts/CandidateHub.sol: 35, 47, 57; contracts/NodeHub.sol: 229; contr

acts/ValidatorHub.sol: 72, 81; contracts/VoteHub.sol: 34; contracts/extensio

ns/BXP20SystemRewardToken.sol: 86

Resolved

Description

The return value of an external call is not stored in a local or state variable, and there exists no check to ensure successful

execution.

35 _candidates.add(account);

47 _candidates.remove(account);

57 _candidates.remove(account);

229 _getSystemContractInstance().transferTo(owner, amount);

72 _validators.add(account);

81 _validators.remove(account);

34 _getSystemContractInstance().transferTo(account, amount);

86 _getSystemContractInstance().transferTo(account, amount);

Recommendation

We recommend the client check the return values of all external function calls to ensure the correct outcome has taken

effect.

BFG-05 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709911

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

498a5f3f405e938cdaf4d5b0ba2373ce6036b378.

BFG-05 BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network/commit/498a5f3f405e938cdaf4d5b0ba2373ce6036b378

BFG-06 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/AccessControlHub.sol: 47, 53; contracts/System.sol: 82; contract

s/extensions/SystemAccess.sol: 13, 48
Resolved

Description

Addresses should be checked before assignment or external call to make sure they are not address(0) .

82 (bool result,) = account.call{value:amount}("");

account is not zero-checked before being used.

13 SYSTEM_CONTRACT_ADDRESS = name;

name is not zero-checked before being used.

48 SYSTEM_CONTRACT_ADDRESS = addr;

addr is not zero-checked before being used.

47 _transferAllowed[account] = true;

account is not zero-checked before being used.

53 _transferAllowed[account] = false;

account is not zero-checked before being used.

Recommendation

We recommend adding a zero-check for the passed-in address value to prevent unexpected errors.

BFG-06 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709923
Adri

Alleviation

[BlackFort Group] : " SYSTEM_CONTRACT_ADDRESS = name; and SYSTEM_CONTRACT_ADDRESS = addr; are only for

development version. Not intended to be in production because it changing the SYSTEM_CONTRACT_ADDRESS may

lead to break of smart contracts.
Issue acknowledged. Changes have been reflected in the commit hash

83a7608ac20bea77220fa76a8e480cdbe6294341."

BFG-06 BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network/commit/83a7608ac20bea77220fa76a8e480cdbe6294341

BFG-07 SHADOWING STATE VARIABLE

Category Severity Location Status

Coding

Style
Minor

contracts/BXP/BXP20.sol: 35, 39; contracts/extensions/BXP20SystemRew

ardToken.sol: 15, 19
Resolved

Description

A state variable is shadowing another component defined in a parent contract.

Variable _totalSupply in BXP20SystemRewardToken shadows the variable _totalSupply in BXP20 .

15 uint256 private _totalSupply;

39 uint256 private _totalSupply;

Variable _balances in BXP20SystemRewardToken shadows the variable _balances in BXP20 .

19 mapping(address => int256) private _balances;

35 mapping(address => uint256) private _balances;

Recommendation

We recommend removing or renaming the state variable that shadows another definition.

Alleviation

[BlackFort Group] : "Partly resolved in commit a28ad84f992f28090b62274f392f5c754508816e. We don't have some way

to change _totalSupply in BXP20 contract which leads to variable shadowing."

[CertiK] : The team heeded the recommendation and made the changes outlined above in commit

a28ad84f992f28090b62274f392f5c754508816e.

BFG-07 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709924
https://github.com/BlackFortGroup/blackfort-network/commit/a28ad84f992f28090b62274f392f5c754508816e
https://github.com/BlackFortGroup/blackfort-network/commit/a28ad84f992f28090b62274f392f5c754508816e

BFG-08 UNCHECKED VALUE OF address.call()

Category Severity Location Status

Logical Issue Minor contracts/NodeHub.sol: 188; contracts/ValidatorHub.sol: 84 Resolved

Description

The linked statement transfers the native token to the specified address. The address.call() function may return false if

the aforementioned transaction is failed. If this return value is not checked, the receiving address is not transferred tokens,

while the related variables have been set to zero or lost, and the tokens cannot be refunded.

188 (bool result,) = msg.sender.call{value:refund}("");

84 (bool result,) = account.call{value:amount}("");

Recommendation

We recommend the client check the local variable result .

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

498a5f3f405e938cdaf4d5b0ba2373ce6036b378.

BFG-08 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659473296250
https://github.com/BlackFortGroup/blackfort-network/commit/498a5f3f405e938cdaf4d5b0ba2373ce6036b378

BFG-09 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Logical

Issue
Minor

contracts/CandidateHub.sol: 45~46, 54~57; contracts/NodeHub.so

l: 169~170, 208; contracts/PollHub.sol: 173~178
Partially Resolved

Description

The order of external calls or transfers and storage manipulation must follow the check-effect-interaction pattern to keep

contract logic safe from exploitation.

External call(s)

45 ValidatorHub.join{value:amount}(account);

State variables written after the call(s)

46 _candidatesBonds[account] = _candidatesBonds[account].sub(amount);

External call(s)

169 VoteHub.mint(owner, nodePrice.div(100));

State variables written after the call(s)

180 amount = amount.sub(nodePrice);

External call(s)

244 delegate(address(0), tokenId);

This function call executes the following external call(s).

In NodeHub.delegate ,

DelegatorHub.burnExtraFor(tokenId)

In NodeHub.delegate ,

BFG-09 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659559935045

DelegatorHub.decreaseDelegatedAmountFor(currentValidator,tokenId)

In NodeHub.delegate ,

DelegatorHub.increaseDelegatedAmountFor(validatorAddress,tokenId)

This call sends Ether.

247 _burnFrom(from, reward - burnedByFrom);

This function call executes the following external call(s).

In NodeHub._burnFrom ,

_getSystemContractInstance().transferTo(owner,amount)

This call sends Ether.

State variables written after the call(s)

253 super._beforeTokenTransfer(from, to, tokenId);

This function call executes the following assignment(s).

In BXP721Enumerable._addTokenToAllTokensEnumeration ,

_allTokens.push(tokenId)

In BXP721Enumerable._removeTokenFromAllTokensEnumeration ,

_allTokens[tokenIndex] = lastTokenId

In BXP721Enumerable._removeTokenFromAllTokensEnumeration ,

_allTokens.pop()

253 super._beforeTokenTransfer(from, to, tokenId);

This function call executes the following assignment(s).

In BXP721Enumerable._addTokenToAllTokensEnumeration ,

_allTokensIndex[tokenId] = _allTokens.length

In BXP721Enumerable._removeTokenFromAllTokensEnumeration ,

_allTokensIndex[lastTokenId] = tokenIndex

BFG-09 BLACKFORT GROUP

In BXP721Enumerable._removeTokenFromAllTokensEnumeration ,

delete _allTokensIndex[tokenId]

253 super._beforeTokenTransfer(from, to, tokenId);

This function call executes the following assignment(s).

In BXP721Enumerable._addTokenToOwnerEnumeration ,

_ownedTokensIndex[tokenId] = length

In BXP721Enumerable._removeTokenFromOwnerEnumeration ,

_ownedTokensIndex[lastTokenId] = tokenIndex

In BXP721Enumerable._removeTokenFromOwnerEnumeration ,

delete _ownedTokensIndex[tokenId]

External call(s)

54 (bool result,) = account.call{value:amount}("");

State variables written after the call(s)

56 _candidatesBonds[account] = _candidatesBonds[account].sub(amount);

57 _candidates.remove(account);

External call(s)

173 VoteHub.burn(msg.sender, amountOfVote.sub(fee));

174 VoteHub.transferFrom(msg.sender, ownerOf(tokenId), fee);

175 VoteHub.burn(ownerOf(tokenId), fee);

State variables written after the call(s)

BFG-09 BLACKFORT GROUP

177 _pollVoteAmount[tokenId][optionId] = _pollVoteAmount[tokenId]

[optionId].add(amountOfVote);

178 _pollTotalVoteAmount[tokenId] =

_pollTotalVoteAmount[tokenId].add(amountOfVote);

Recommendation

We recommend the client always check the storage variables affected by an external call first, then update the storage

variables affected by the external call, and finally make the external call itself.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

a4313c0864b2f69d73280d97ceab2e680da3c911.

[CertiK] : The issue still persists for the following locations:

Function accept() in contract CandidateHub still makes an external call to function join() in ValidatorHub

before updating _candidatesBonds[account]`.

Function delegate() in contract NodeHub still makes external calls to DelegatorHub and SlashingHub before

updating _delegators[tokenId] .

BFG-09 BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network/commit/a4313c0864b2f69d73280d97ceab2e680da3c911

BFG-10 totalSupply IS NOT UPDATED WITH EVERY TOKEN

BURN

Category Severity Location Status

Language

Specific
Minor

contracts/DelegatorHub.sol: 39~40, 49~50; contracts/extensions/BXP20

SystemRewardToken.sol: 93~94, 97~98
Resolved

Description

The functions _increaseBurntAmountOf() and _decreaseBurntAmountOf() are called in contracts which inherit contract

BXP20SystemRewardToken as a base. Since these functions are called directly and not through _burn() in that

circumstance, the value for _totalSupply is not updated to reflect the total number of tokens present in the contract.

Recommendation

We recommend updating the _totalSupply directly in the _increaseBurntAmountOf() and _decreaseBurntAmountOf()

functions, since _burn() calls _increaseBurntAmountOf() .

Alleviation

[CertiK] : Please see the team's explanation below concerning the validity of mechanism.

[BlackFort Group] : "These methods update shares of distribution. When you undelegate NodeHub token the

burnExtraFor method already processes changes in totalSupply, then decreaseDelegatedAmountFor and

increaseDelegatedAmountFor change only shares in a way that it's not reflected on users' balances, so totalSupply is not

changed"

BFG-10 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659566966964

BFG-11 BOOL SHOULD BE RETURNED AND CHECKED BY
FUNCTION accept() IN CandidateHub

Category Severity Location Status

Inconsistency Minor contracts/CandidateHub.sol: 39~40; contracts/ValidatorHub.sol: 72~73 Resolved

Description

The bool return value for _validators.add(account) should be returned by the function join() and checked by the

accept() function in the CandidateHub contract when called to ensure the correct outcome takes effect. Otherwise, in the

CandidateHub contract, _candidates and _candidatesBonds may be updated without the account being added to the

_validators list.

Recommendation

We recommend returning the bool value of _validators.add(account) at the end of the function call join() .

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

778ab1b00fa0dce352b31e6b72fe372afe0b1fcb.

BFG-11 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659639046009
https://github.com/BlackFortGroup/blackfort-network/commit/778ab1b00fa0dce352b31e6b72fe372afe0b1fcb

BFG-12 MISSING INPUT VALIDATION

Category Severity Location Status

Logical

Issue
Minor

contracts/CandidateHub.sol: 65; contracts/PollHub.sol: 79~80, 84~85, 8

9~90
Resolved

Description

The given input is missing a check for a nonzero amount.

Recommendation

We recommend the client add the necessary check for the mentioned functions. Ideally, each input would be checked

against a chosen upper and lower bound.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

cac887bb16759e60f6df3fcdd516f73091ab8963.

BFG-12 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659645911932
https://github.com/BlackFortGroup/blackfort-network/commit/cac887bb16759e60f6df3fcdd516f73091ab8963

BXA-01 super.mint INCORRECTLY CALLED IN burn() FUNCTION

Category Severity Location Status

Logical Issue Critical contracts/BXP/BXP20Asset.sol: 76 Resolved

Description

In the contract BXP20Asset , the override function burn calls the function mint of the next most derived contract.

 function burn(address account, uint256 amount) public override

notInBlackList(account) {

 super.mint(account, amount);

 }

Recommendation

We recommend the client call super.burn() function in the function burn .

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

792ecdc81c99ebe5f4d25a4977a237d02de71e3f.

BXA-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659474277887
https://github.com/BlackFortGroup/blackfort-network/commit/792ecdc81c99ebe5f4d25a4977a237d02de71e3f

BXS-01 UNDERFLOW VULNERABILITY THROUGH USE OF SIGNED
INTEGERS

Category Severity Location Status

Logical Issue, Mathematical

Operations
Minor

contracts/extensions/BXP20SystemRewardT

oken.sol: 29~30
Partially Resolved

Description

The balanceOf() function is overridden from the base BXP20 contract, where the balance is calculated by first adding the

amount minted and amount recorded in _balances for an account as signed integers. This value is converted to an

unsigned integer and the amount burned by the address is subtracted. If the contract logic allows for the absolute value of

_balances[account] to be larger than the value of mintedBy(account) while _balances[account] is a negative value,

this will lead to an underflow. Consider the following set up:

Let _balances[account] = -2 and mintedBy(account) = 1. The sum of the two values is -1 and when that value is

converted to an unsigned integer, it causes an underflow, reading the value as 2^256 - 1 instead. The account accomplishing

this now has access to an amount larger than what they actually own.

Recommendation

During the audit, no clear path was found for executing the attack vector described above. However, such a path could still

exist. We recommend removing the use of signed integers in calculating balances for a token in order to remove

unnecessary risk from the contract. The original implementation for determining the balance and transferring tokens in the

BXP20 contract can be used while continuing to record the number of tokens minted and burned through the mappings

_mintedAmount and _burntAmount .

Alleviation

[CertiK] : The team acknowledged the finding and took steps towards resolution in commit

9b58d7edff7a095c0ecf897eb8fbe6c925850c9f. However, the changes made appear to completely remove the use of the

mapping _balances within the contract. The balanceOf() function and _transfer() function no longer reference or update

this mapping.

BXS-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659566127359
https://github.com/BlackFortGroup/blackfort-network/commit/9b58d7edff7a095c0ecf897eb8fbe6c925850c9f

DHB-01 ANYONE CAN CALL burnExtraFor()

Category Severity Location Status

Logical Issue Minor contracts/DelegatorHub.sol: 82 Resolved

Description

There is no access restriction on the function burnExtraFor in the contract DelegatorHub , allowing anyone to burn the

extra amount for a specified token at any time.

Recommendation

We recommend the client re-examine this function and clarify whether everyone should have open access to make this

update for any given address.

Alleviation

[BlackFort Group] : Functionality limited to NodeHub only at Commit dd4e4d7acc4df78a30bf8449fce1b94a2b8d1f56.

DHB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659472256397
https://github.com/BlackFortGroup/blackfort-network/commit/dd4e4d7acc4df78a30bf8449fce1b94a2b8d1f56

NHB-01 burntAmount NOT UPDATED CORRECTLY FOR to AND

from ADDRESSES

Category Severity Location Status

Logical Issue, Inconsistency Medium contracts/NodeHub.sol: 250~251 Resolved

Description

In the hook _beforeTokenTransfer() , the internal function _burnFrom() is called for the from address to burn the

amount reward - burnedByFrom , but after, the mapping _burntAmount is decreased by the amount reward instead of

being increased by the difference reward - burnedByFrom . On the other hand, the mapping _burntAmount is updated for

the to address by increasing by the amount reward . Since the to address is not burning tokens, their _burntAmount

should not be increased at all.

Recommendation

We recommend increasing the _burntAmount for the from address by the value of reward - burnedByFrom and

removing the updates to the _burntAmount for the to address.

Alleviation

[CertiK] : See the team's explanation of the design choice below.

[BlackFort Group] : "availableBalanceOf is difference between all rewards from the owned tokens and total burntAmount

for the owner. If we transfer NodeHub token to someone else, we need to claim unclaimed rewards for exact token which is

done by reward - burnedByFrom and then decrease burntAmount by reward for current owner and increase by same value

burntAmount for new owner because if we'll not do that, new owner wiil have access to possibly already claimed tokens and

previous one will not be able to withdraw his earned before tokens or even trap into negative availableBalanceOf

Current realization is a solution for, as I personally call, double-claim problem. BFG-04 is related to this case."

NHB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659644901913

NHB-02 NO VALIDATION CHECK ON THE FUNCTION unlock()

AND lock()

Category Severity Location Status

Logical Issue Minor contracts/NodeHub.sol: 191~192, 197~198 Resolved

Description

The functions lock() and unlock() should only be used on existing tokens. Moreover, lock() should only be executed

if a token is currently unlocked, and unlock() should only be executed if a given token is currently locked.

Recommendation

We recommend the client add the necessary checks for the mentioned functions.

Alleviation

[BlackFort] : Issue acknowledged. Changes have been reflected in the commit hash

163729ffe51870229fdb570de136232977eba7c6.

NHB-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659642852611
https://github.com/BlackFortGroup/blackfort-network/commit/163729ffe51870229fdb570de136232977eba7c6

PHB-01 WRONG INDEX IN THE LOOP OF REMOVING OPTION

Category Severity Location Status

Logical Issue Major contracts/PollHub.sol: 137 Resolved

Description

The function removeOption is used to remove the option optionId for the token tokenId by moving all subsequent

options of this option in the array one place forward and removing the last one in the array. But the move operation (line 137)

on state variable _pollOptions lacks token id, resulting in a removal of all poll options for a given tokenId .

25 mapping(uint256 => string[]) private _pollOptions;

135 function removeOption(uint256 tokenId, uint256 optionId) public

onlyOwner(tokenId) pollNotOpened(tokenId) optionExists(tokenId, optionId) {

136 for(uint i = optionId; i < optionsCountOf(tokenId) - 1; i++){

137 _pollOptions[i] = _pollOptions[i + 1];

138 }

139 _pollOptions[tokenId].pop();

140 _pollVoteAmount[tokenId].pop();

141 }

Recommendation

We recommend the client fix the wrong index on _pollOptions as below:

 _pollOptions[tokenId][i] = _pollOptions[tokenId][i + 1];

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

a092d35c9462270b12d2d9286a460fef2cf9265d.

PHB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659557630198
https://github.com/BlackFortGroup/blackfort-network/commit/a092d35c9462270b12d2d9286a460fef2cf9265d

PHB-02 INCORRECT CONDITION IN MODIFIER pollNotOpened

Category Severity Location Status

Logical Issue Medium contracts/PollHub.sol: 46 Resolved

Description

The _pollDeadline[tokenId] is set in the function start() . Before opening the poll, the _pollDeadline[tokenId] is

always equal to 0. However, the start() function uses the pollNotOpened modifier, so the function cannot be executed.

Due to this failure, the following functions cannot be executed:

burn()

updateTitle()

addOption()

removeOption()

updateOption()

start()

updateDeadlineBlock() (cannot be executed because poll cannot be opened)

vote() (cannot be executed because poll cannot be opened)

Recommendation

We recommend the client re-examine this modifier as well as the functions that use this modifier, and consider whether the

modifier require is meant to read as follows:

require(_pollDeadline[tokenId] == 0, "PollHub: poll is either opened or closed");

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

addfca7ac042d0867642e6f69c706c5373507ec1.

PHB-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659475105965
https://github.com/BlackFortGroup/blackfort-network/commit/addfca7ac042d0867642e6f69c706c5373507ec1

PHB-03 pollExists MODIFIER MAKES FUNCTIONS UNUSABLE IF

TOKENS ARE BURNED

Category Severity Location Status

Logical Issue Medium contracts/PollHub.sol: 61~62 Resolved

Description

The pollExists modifier relies on the check that the tokenId value is strictly less than the value of totalSupply()

which comes from BXP721Enumerable inheritance. The contract includes the ability to burn the contract non-fungible

tokens, and when they are burned, the value for totalSupply decreases. However, each time a token is minted, it uses

strictly increases values through incrementing _tokenIdTracker . As such, if one token is burned, then the most recently

issued tokenId will appear to no longer exist under the logic of this modifier. As more tokens are burned, more of the recently

minted tokens will appear to no longer exist, even if they have not been burned.

Recommendation

We recommend using the logic built in to BXP721 contract to check if a tokenId exists in order to avoid this issue.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

9c719ccc522a90ab70dde69b7201fe0e05045010.

PHB-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659647497202
https://github.com/BlackFortGroup/blackfort-network/commit/9c719ccc522a90ab70dde69b7201fe0e05045010

PHB-04 DEADLINE CAN BE UPDATED TO A BLOCK BEFORE
PREVIOUS DEADLINE

Category Severity Location Status

Logical Issue Medium contracts/PollHub.sol: 159~160 Resolved

Description

The newBlockDeadline can be updated to a value that is less than the previous _pollDeadline value. In this way, a poll

owner can end a poll at a time in which they are satisfied with the current poll results.

Recommendation

We recommend that the value newBlockDeadline be checked so that it is not less or equal to the current _pollDeadline

value.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

a4ee6a3e17bbb5bbf358f4448207eebfd5121837.

PHB-04 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659649278220
https://github.com/BlackFortGroup/blackfort-network/commit/a4ee6a3e17bbb5bbf358f4448207eebfd5121837
Adri

PHB-05 LOCKED ETHER

Category Severity Location Status

Language Specific Minor contracts/PollHub.sol: 147 Resolved

Description

The contract has one payable function start , but does not have a function to withdraw the fund.

147 function start(uint256 tokenId, uint256 blockDeadline) public payable

onlyOwner(tokenId) pollNotOpened(tokenId) {

Recommendation

We recommend the client add a withdraw function.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

6ed1a80e7ba2d493a2469a8f4109e65bd52a3685.

PHB-05 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709921
https://github.com/BlackFortGroup/blackfort-network/commit/6ed1a80e7ba2d493a2469a8f4109e65bd52a3685

PHB-06 USER MAY OVERPAY IN start() FUNCTION

Category Severity Location Status

Logical Issue Minor contracts/PollHub.sol: 148 Resolved

Description

If a user calls the function start() , they must include a payment equal to pollPrice . Since the condition at line 148 for

checking the sending value from caller is equal to or greater than pollPrice , the user may overpay for the function call

without a refund.

147 function start(uint256 tokenId, uint256 blockDeadline) public payable

onlyOwner(tokenId) pollNotOpened(tokenId) {

148 require(msg.value >= pollPrice, "PollHub: insufficient amount paid");

149 require(blockDeadline >= block.number, "PollHub: deadline block number

must be in future");

150 _pollDeadline[tokenId] = blockDeadline;

151

152 emit PollStarted(tokenId, blockDeadline);

153 }

Recommendation

We recommend the client change the statement to avoid overpaying as below:

 require(msg.value == pollPrice, "PollHub: insufficient amount paid");

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

6ed1a80e7ba2d493a2469a8f4109e65bd52a3685.

PHB-06 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659558586118
https://github.com/BlackFortGroup/blackfort-network/commit/6ed1a80e7ba2d493a2469a8f4109e65bd52a3685

SAB-01 LACK OF ACCESS CONTROL

Category Severity Location Status

Control Flow Critical contracts/extensions/SystemAccess.sol: 12 Resolved

Description

The function set_SYSTEM_CONTRACT_ADDRESS can be called by anyone as it has no access restriction. This enables anyone

to call this and set SYSTEM_CONTRACT_ADDRESS to a malicious contract that defines the same functions, with unexpected

behavior. In addition, there is another test public function TEST_setSystemContract which has same functionality without

any access restriction. As SystemAccess is a base contract for many of the project's contracts, this compromises all

contracts that depend on this logic.

Recommendation

We recommend the client add a modifier or require statement to the function set_SYSTEM_CONTRACT_ADDRESS() restricting

who can set SYSTEM_CONTRACT_ADDRESS . An alternative would be to declare a constructor() where the deployer can set

the SYSTEM_CONTRACT_ADDRESS , and removing the vulnerable function completely. Additionally, we recommend removing

the test function TEST_setSystemContract prior to deployment.

Alleviation

[BlackFort Group] : Development methods were removed in commit 83a7608ac20bea77220fa76a8e480cdbe6294341.

SAB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589026
https://github.com/BlackFortGroup/blackfort-network/commit/83a7608ac20bea77220fa76a8e480cdbe6294341

SAB-02 HARDCODED ADDRESS

Category Severity Location Status

Volatile Code Minor contracts/extensions/SystemAccess.sol: 10~11 Resolved

Description

The SystemAccess contract serves as the base contract to several contracts in the scope of this audit. When one of these

contracts is deployed, the initial state for SYSTEM_CONTRACT_ADDRESS is the address

address(0x0000000000000000000000000000000000001000) . This address cannot be verified until the blockchain is

launched. If this is not the correct address, any attempt to call functions within the derived contracts that depend on this

variable may behave unexpectedly and could cause unforeseen issues.

Recommendation

We recommend the team carefully manages any changes to addresses before launch and updates them before deploying

the contracts.

Alleviation

[BlackFort Group] : Must be always equal to address(0x0000000000000000000000000000000000001000).

Development methods were removed in commit 83a7608ac20bea77220fa76a8e480cdbe6294341.

Update 10/13/22
 [BlackFort Group] : "We'll use set of addresses from

0x0000000000000000000000000000000000000999 to 0x0000000000000000000000000000000000001007

for our core smart contracts. They're all predefined in genesis block."

SAB-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659567591416
https://github.com/BlackFortGroup/blackfort-network/commit/83a7608ac20bea77220fa76a8e480cdbe6294341#diff-ab8b96b1a17b190f91bd7a2d6b45e660f148c487b4cf9352cf0a8fda93091ab5

SAB-03 MODIFIER DOES NOT CHECK FOR INTENDED
FUNCTIONALITY

Category Severity Location Status

Coding Style, Language Specific Minor contracts/extensions/SystemAccess.sol: 29~30 Resolved

Description

The modifier transfersAvailable() reverts if the calling address does have transfers available. Since the default bool of

a mapping is false , this will mean any calling contract will pass the modifier unless it is updated to true .

Recommendation

If this is the intended functionality, we recommend changing the naming of the related functions and modifiers to reflect this.

Otherwise, we recommend removing the negation symbol "!".

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

ab51c879dc7be24d4b2644503139460dda5cd11c.

SAB-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659568108253
https://github.com/BlackFortGroup/blackfort-network/commit/ab51c879dc7be24d4b2644503139460dda5cd11c

SBF-01 NO VALIDATION FOR STRING INPUT IN approve()

Category Severity Location Status

Data Flow Medium contracts/System.sol: 34~35 Partially Resolved

Description

In the approve() function, an address has an associated string input name that the account address is associated to in

the mapping _accounts . There is no validation check that that the mapping _accounts for entry name is already

occupied. From context, it appears the approve() function assigns a contract name to in-house contracts addresses, to

be used for validation checks in other contracts.

If an externally owned address is approved through this function, the address can directly interact with the transferTo()

address, which sends out native BXN tokens to specified addresses.

Moreover, any updates to the address corresponding to a given name using the approve() function causes the previous

address to immediately lose privileged access.

Lastly, there is no check that the input name is a mapping that is used within other contracts. If the name is incorrectly

input, then the corresponding checks using the onlyContract modifier will not allow a contract to interact.

Recommendation

We recommend adding a validation check that the name in the _accounts mapping is not currently occupied (and if it is,

updating it to be unoccupied first). Further, we recommend that the options for the string input name be predetermined using

an enum so that unusable strings are not updated in the mapping.

Alleviation

[BlackFort Group] : "Issue acknowledged. Changes have been reflected in the commit hash

70116c06e5470d2c80f70bc1a982f4a94c15a7f3.

Still having centralization risks issue."

[CertiK] : The new method of adding accounts may lead to a separate issue where an account is assigned an amount

without setting the corresponding name, since these two operations are executed as two separated functions.

SBF-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659631222588
https://github.com/BlackFortGroup/blackfort-network/commit/70116c06e5470d2c80f70bc1a982f4a94c15a7f3

SHB-01 LACK OF VALIDATION FOR byBlock

Category Severity Location Status

Volatile Code Minor contracts/SlashingHub.sol: 37 Resolved

Description

There is no validation for the input byBlock in the function slash() . The role VALIDATOR_MANAGER_ROLE can update this

value to a past block, effectively updating the address to no longer be slashed. However, _timesSlashed is still increased.

30 function slash(address account, uint256 byBlock) public {

31 require(hasRole("VALIDATOR_MANAGER_ROLE", msg.sender), "SlashingHub:

only validator manager has right to perform that");

32 require(

33 IValidatorHub(_getAddressOf("VALIDATOR_HUB")).isValidator(account),

34 "SlashingHub: validator address is not valid"

35);

36

37 _slashedBy[account] = byBlock;

38 if (_timesSlashed[account] == 0) {

39 _timesSlashed[account] = 1;

40 }

41 _timesSlashed[account] = _timesSlashed[account].mul(2);

42 }

Recommendation

We recommend the client add a requirement that the value for byBlock must exceed the current block.number , or

change the logic of slash() to reflect the possibility of using a past block number accordingly.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

7a950a903a33d3ae78a2a7d61286220b2b28240d.

SHB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659560457114
https://github.com/BlackFortGroup/blackfort-network/commit/7a950a903a33d3ae78a2a7d61286220b2b28240d

BFG-16 UNLOCKED COMPILER VERSION

Category Severity Location Status

Compiler

Error
Informational

contracts/AccessControlHub.sol: 3; contracts/BXP/BXP165.sol: 3; c

ontracts/BXP/BXP20.sol: 3; contracts/BXP/BXP20Asset.sol: 3; contr

acts/BXP/BXP721.sol: 3; contracts/BXP/BXP721Enumerable.sol: 4;

contracts/BXP/WBXN.sol: 3; contracts/BXP/interfaces/IBXP165.sol:

4; contracts/BXP/interfaces/IBXP20.sol: 3; contracts/BXP/interfaces/

IBXP20Metadata.sol: 3; contracts/BXP/interfaces/IBXP721.sol: 3; co

ntracts/BXP/interfaces/IBXP721Enumerable.sol: 3; contracts/BXP/in

terfaces/IBXP721Metadata.sol: 3; contracts/BXP/interfaces/IBXP72

1Receiver.sol: 3; contracts/CandidateHub.sol: 3; contracts/Delegato

rHub.sol: 3; contracts/NodeHub.sol: 3; contracts/PollHub.sol: 3; cont

racts/SlashingHub.sol: 3; contracts/System.sol: 3; contracts/Validato

rHub.sol: 3; contracts/VoteHub.sol: 3; contracts/extensions/BXP20S

ystemRewardToken.sol: 3; contracts/extensions/ExtendedMath.sol:

3; contracts/extensions/SystemAccess.sol: 3; contracts/interfaces/IA

ccessControlHub.sol: 3; contracts/interfaces/IBXP20SystemReward

Token.sol: 3; contracts/interfaces/IDelegatorHub.sol: 3; contracts/int

erfaces/INodeHub.sol: 3; contracts/interfaces/ISlashingHub.sol: 3; c

ontracts/interfaces/ISystem.sol: 3; contracts/interfaces/IValidatorHu

b.sol: 3; contracts/interfaces/IVoteHub.sol: 3

Resolved

Description

The contracts listed have an unlocked compiler version. An unlocked compiler version in the source code of the contract

permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers. This can lead to an ambiguity when debugging as compiler

specific bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than

a specific one.

Moreover, the lowest compiler version declared is, at the time of this report, the newest compiler version available. Using the

most recent compiler version may expose the contracts to unforeseen bugs not yet found in this compiler version.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can be compiled at. For

example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;

We additionally recommend considering the use of a compiler version lower than v0.8.15 .

BFG-16 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657641433887

Alleviation

[CertiK] : The team heeded the recommendation and made the changes outlined above in commit

2e67d871e7f4456e2cfe8ea90ec6a878807fe957.

BFG-16 BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network/commit/2e67d871e7f4456e2cfe8ea90ec6a878807fe957

BFG-17 MISSING EMIT EVENTS

Category Severity Location Status

Language

Specific
Informational

contracts/AccessControlHub.sol: 31; contracts/CandidateHub.sol: 3

9, 50, 65; contracts/DelegatorHub.sol: 32, 42; contracts/NodeHub.s

ol: 79, 191, 197; contracts/PollHub.sol: 73, 79, 84, 89, 94, 135; con

tracts/SlashingHub.sol: 30; contracts/ValidatorHub.sol: 70, 77

Resolved

Description

One or more state changes do not emit events to pass the changes out of chain.

Recommendation

We recommend declaring and emitting corresponding events for all the essential state variables that can possibly be

changed during runtime.

Alleviation

[CertiK] : The team heeded the recommendation and made the changes outlined above in commit

d5706ad2c7550f481b9f480af76e20e2da57fbf1.

BFG-17 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464036489
https://github.com/BlackFortGroup/blackfort-network/commit/d5706ad2c7550f481b9f480af76e20e2da57fbf1

BXA-03 burn() AND destroy() HAVE THE SAME INTENDED

UTILITY FOR TWO DISTINCT PARTIES

Category Severity Location Status

Coding Style, Inconsistency Informational contracts/BXP/BXP20Asset.sol: 44~45, 75~76 Resolved

Description

The contract BXP20Asset inherits from both the contract Manageable and the contract BlackList . Through BlackList ,

the BXP20Asset contract has the function destroyFunds() available which the role ASSET_BLACKLIST_MANAGER_ROLE can

call to burn the entire balance of a given address, for addresses that are included on the blacklist. Alternatively, the function

burn() in the BXP20Asset contract allows the ASSET_MANAGER_ROLE to burn tokens for any address that is not on the

blacklist. In this way, any address participating can have their tokens burned by a privileged role. If this is the case, it appears

the modifier checking whether a user is in or is not in a blacklist is not needed.

Recommendation

We recommend clarifying this choice of design.

Alleviation

[BlackFort Group] : "We used same concept used in USDT token and we'd prefer to keep regular burn separately from

destroying funds which were laundred for example. Regular burn will be used for exchanging tokenized asset (for example

our wrapped BTC called BxBTC to native one)."

BXA-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659564524860

CHB-01 LOGIC ISSUE WHEN ADDING USERS TO CANDIDATES

Category Severity Location Status

Logical Issue Informational contracts/CandidateHub.sol: 25~37 Partially Resolved

Description

A user can send the requiredAmount of BXN to the contract CandidateHub to become a candidate. Since the function

receive() only checks the identity of a validator, candidates can trigger this function more than once. Although the

validation on sent value amount is to check the cumulative total amount sent from a user, _candidatesBonds[account] is

actually equal to 0 when a user triggers the function for the first time, meaning that a user has to pay at least the

requiredAmount of BXN the first time. After that, they can send any amount they want to increase their bonds while adding

a user to a candidate would be performed multiple times with false returned each time.

We speculate that this validation is supposed to allow the user to send tokens multiple times before becoming a candidate

until the required number is reached at which point, they will be added to the candidates set.

25 receive() external payable {

26 address account = msg.sender;

27 uint256 amount = msg.value;

28 IValidatorHub ValidatorHub =

IValidatorHub(_getAddressOf("VALIDATOR_HUB"));

29

30 require(!ValidatorHub.isValidator(msg.sender), "CandidateHub: you're

already validator");

31 require(

32 _candidatesBonds[account].add(amount) >= requiredAmount,

33 "CandidateHub: you don't have enough amount of tokens to become

candidate"

34);

35 _candidates.add(account);

36 _candidatesBonds[account] = _candidatesBonds[account].add(amount);

37 }

Recommendation

We recommend the client re-examine the function receive() and change the logic accordingly.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

d03278d963a712c7dfba2189d2d5f4390a481ae3.

CHB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659626560414
https://github.com/BlackFortGroup/blackfort-network/commit/d03278d963a712c7dfba2189d2d5f4390a481ae3

[CertiK] : The function receive() still requires the user to send requiredAmount the first time. We encourage the team

to consider whether the functionality of allowing the user to execute receive() multiple times after becoming a candidate is

an intentional part of the design.

CHB-01 BLACKFORT GROUP

EMB-01 DEAD CODE

Category Severity Location Status

Coding Style Informational contracts/extensions/ExtendedMath.sol: 7 Resolved

Description

One or more internal functions are not used.

 function sqrt(uint256 x) internal pure returns(uint256) {

Recommendation

We recommend removing the unused functions.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

7074b7f14c59c56d1ad187b9a706c3f270d23a9d.

EMB-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464036488
https://github.com/BlackFortGroup/blackfort-network/commit/7074b7f14c59c56d1ad187b9a706c3f270d23a9d

NHB-04 UNCLEAR IF CONTRACT IS UPGRADEABLE

Category Severity Location Status

Control Flow Informational contracts/NodeHub.sol: 18~19 Resolved

Description

It is unclear from the context if this contract is meant to be upgradeable and used with a proxy.

Recommendation

We recommend the client clarify if the intention is to use this contract as an implementation contract with a proxy contract.

Alleviation

[BlackFort] : "One-time setup. We put our contracts in genesis-block, so we can't run their constructors, we have to run

init() methods for some contracts that require such action."

NHB-04 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659640761308

PHB-08 mint() FUNCTION DOES NOT TAKE A FEE

Category Severity Location Status

Language Specific Informational contracts/PollHub.sol: 100~101 Resolved

Description

The function mint() in PollHub checks that the msg.sender has the required amount of VoteHub tokens, and that

they also have hold the required amount of BXN , however, these amounts of tokens are not withdrawn from the

msg.sender during the execution of mint() . Please clarify whether this is the intention, that is that the amount of

participation in the project is measured by the amount of BXN and VoteHub tokens owned by the address.

Recommendation

We recommend considering whether the requiredAmountOfBXN and requiredAmountOfVote should be withdrawn during

execution of the mint() function.

Alleviation

[BlackFort Group] : "You pay with BXN only when you want to start the poll, Vote amount is just a requirement to have

certain minimum of it.If we do payment in mint, we'd need to refund the payment if user decides to burn his token without

starting the poll. In our case we give possibility to create polls for everyone, but you have to pay for start.

It's designed in the way that you can properly prepare your poll, before releasing it. VoteHub token used only to make

minting available for users with necessary amount. Fee is taken only when poll is published."

PHB-08 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659648346769

SAB-04 DECLARATION NAMING CONVENTION

Category Severity Location Status

Coding Style Informational contracts/extensions/SystemAccess.sol: 12, 47 Resolved

Description

One or more declarations do not conform to the Solidity style guide with regards to its naming convention.

Particularly:

camelCase : Should be applied to function names, argument names, local and state variable names, modifiers

UPPER_CASE : Should be applied to constant variables

CapWords : Should be applied to contract names, struct names, event names and enums

12 function set_SYSTEM_CONTRACT_ADDRESS(address name) public {

Function set_SYSTEM_CONTRACT_ADDRESS is not in camelCase .

47 function TEST_setSystemContract(address addr) public {

Function TEST_setSystemContract is not in camelCase .

Recommendation

We recommend adjusting those function names to properly conform to Solidity's naming convention.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

c3ecf3f8db79720bdd1a967a079b77eb38a7903c.

SAB-04 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659464581932
https://solidity.readthedocs.io/en/v0.7.3/style-guide.html#naming-conventions
https://github.com/BlackFortGroup/blackfort-network/commit/c3ecf3f8db79720bdd1a967a079b77eb38a7903c

SAB-05 FUNCTION set_SYSTEM_CONTRACT_ADDRESS DEFINED

BEFORE MODIFIERS

Category Severity Location Status

Coding Style Informational contracts/extensions/SystemAccess.sol: 12~13 Resolved

Description

For improved readability, functions should be defined after modifiers, conforming to the solidity style guide.

Recommendation

We recommend defining set_SYSTEM_CONTRACT_ADDRESS() after the modifiers are defined. Refer to the style guide for

more information: https://docs.soliditylang.org/en/v0.8.15/style-guide.html#order-of-layout

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

c3ecf3f8db79720bdd1a967a079b77eb38a7903c.

SAB-05 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659568371975
https://docs.soliditylang.org/en/v0.8.15/style-guide.html#order-of-layout
https://github.com/BlackFortGroup/blackfort-network/commit/c3ecf3f8db79720bdd1a967a079b77eb38a7903c

SBF-02 NO REFUND IF CALLER IS NOT VALIDATOR

Category Severity Location Status

Logical Issue Informational contracts/System.sol: 61~63 Resolved

Description

The contract System has a receive() function, so anyone can send BXN to this contract. For the validator user, the sent

amount will be used to mint tokens in ValidatorHub and DelegatorHub. But for the non-validator user, the sent amount will be

locked in this contract without refund.

Recommendation

We recommend the client re-examine this function and clarify whether the tokens sent from non-validator users should be

refunded.

Alleviation

[CertiK] : "Please see the team's explanation of the design choice below."

[BlackFort Group] : "We have fixed supply so it would be better to collect "burned" tokens back to main storage which

System is. My personal thought.

The idea is only that you can recycle them to System, not for 0x00..00 or 0xff..fff address, So they stay in System storage,

but any time they can return back to the available supply."

SBF-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659475565581

SBF-03 RACE CONDITION FOR THIRD PARTY ADDRESSES

Category Severity Location Status

Control Flow Informational contracts/System.sol: 34~35 Resolved

Description

If external third party addresses are given an _approvedAmount via the approve() function, the external address can front

run any changes made to the _approvedAmount by spending the previous approved amount before the update to the

approved amount goes into effect.

Recommendation

We recommend a function is implemented to increase and decrease the _approvedAmount if approval is meant to be given

to external contracts or addresses that are not controlled by the client.

Alleviation

[CertiK] : Since this functionality can only be executed by in-house contracts and privileged roles, the finding is considered

resolved.

[BlackFort Group] : "Approval for System used only by our addresses and contracts and controlled by us, thought we

might need change values there if anything like we integrate new contract for example"

SBF-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659631609362

SHB-02 _timesSlashed UPDATED TO 2 THE FIRST TIME slash()

CALLED

Category Severity Location Status

Inconsistency Informational contracts/SlashingHub.sol: 41~42 Resolved

Description

When slash() is called for an address the first time, _timesSlashed is updated to value 2, instead of 1.

Recommendation

We recommend clarifying if this is the intended effect. If it is, no action is needed and this finding may be removed.

Otherwise, please update the logic to reflect the correct value for _timesSlashed each time slash() is called.

Alleviation

[CertiK] : The team clarifies their choice of design below.

[BlackFort Group] : " timesSlashed() returns value by which reward is divided by. First time reward is divided by 2,

which requires us to set 1 at first method call instead of 0."

SHB-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659645543880

VHF-01 VALIDATORS CAN SET THEIR OWN COMMISSION

Category Severity Location Status

Logical Issue Informational contracts/ValidatorHub.sol: 54 Resolved

Description

When the Candidate is added to the _validators set in the function join() , the state variable

_validatorCommission[account] is set to 100 by default. After, a validator can set their own commission to any value by

the function setCommission() .

Recommendation

We recommend clarifying whether the Validators themselves should have the permission to set their own commission or only

the VALIDATOR_MANAGER_ROLE should have this ability.

Alleviation

[BlackFort Group] : Validators set commission by themselves. Default equals to 10% from reward. Delegators can select

validators which offer best conditions or whom they personally support.

Default should be 1000 which means 10%. Fixed in commit ed09661ece8f45ade62b5ae1f228249c05666249.

VHF-01 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659561068331
https://github.com/BlackFortGroup/blackfort-network/commit/ed09661ece8f45ade62b5ae1f228249c05666249

OPTIMIZATIONS BLACKFORT GROUP

ID Title Category Severity Status

BFG-13
Improper Usage Of public And

external Type
Gas Optimization Optimization Resolved

BFG-14 Unnecessary Use Of SafeMath Gas Optimization Optimization Resolved

BFG-15
Non-Adherence To AccessControl

Instructions

Gas Optimization,

Control Flow
Optimization Acknowledged

BXA-02
Multiple Checks An Address Is Not In

Blacklist
Gas Optimization Optimization Resolved

DHB-02 Unused State Variable Gas Optimization Optimization Resolved

NHB-03
constructor Sets _initialized To

true On Deploy
Gas Optimization Optimization Resolved

PHB-07
Modifier pollExists Checked Twice In

Function Call
Gas Optimization Optimization Resolved

OPTIMIZATIONS BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589032
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709915
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659622677743
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659564949130
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709917
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659640521343
https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659648677012

BFG-13 IMPROPER USAGE OF public AND external TYPE

Category Severity Location Status

Gas

Optimization
Optimization

contracts/AccessControlHub.sol: 31, 44, 51; contracts/BXP/BXP2

0Asset.sol: 30, 37, 44, 56, 61, 71, 75; contracts/BXP/WBXN.sol:

13, 17; contracts/CandidateHub.sol: 39, 50, 65; contracts/Delegat

orHub.sol: 32, 42, 76, 82; contracts/NodeHub.sol: 191, 197, 203;

contracts/PollHub.sol: 79, 84, 89, 94, 100, 110, 130, 135, 147, 15

9, 168; contracts/SlashingHub.sol: 30; contracts/System.sol: 34;

contracts/ValidatorHub.sol: 54, 70, 77; contracts/VoteHub.sol: 24,

28, 32, 45; contracts/extensions/BXP20SystemRewardToken.sol:

37, 41, 45; contracts/extensions/SystemAccess.sol: 12, 47

Resolved

Description

The functions which are never called internally within the contract should have external visibility for gas optimization.

Recommendation

We recommend the client use the external attribute for public functions that are never called within the contract.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

2606185f7ed1952f25804b5da280546db8e28b77.

BFG-13 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571589032
https://github.com/BlackFortGroup/blackfort-network/commit/2606185f7ed1952f25804b5da280546db8e28b77

BFG-14 UNNECESSARY USE OF SAFEMATH

Category Severity Location Status

Gas

Optimization
Optimization

contracts/CandidateHub.sol: 31~34, 36, 46, 56; contracts/Delegat

orHub.sol: 16~17, 38, 39, 50, 62, 71, 79; contracts/NodeHub.sol:

21, 109, 110, 111, 113, 119, 130, 140, 169, 177, 179, 180, 187, 2

28; contracts/PollHub.sol: 15, 171, 173, 177, 178; contracts/Slas

hingHub.sol: 41; contracts/System.sol: 69, 70, 71, 72, 73, 83, 86;

contracts/ValidatorHub.sol: 14~15, 37, 49, 73, 82; contracts/exten

sions/BXP20SystemRewardToken.sol: 13~14, 30, 55, 56, 85, 94,

98

Resolved

Description

The SafeMath library is used unnecessarily. With Solidity compiler versions 0.8.0 or newer, arithmetic operations will

automatically revert in case of integer overflow or underflow.

12 using SafeMath for uint256;

SafeMath library is used for uint256 type in CandidateHub contract.

31 require(

32 _candidatesBonds[account].add(amount) >= requiredAmount,

33 "CandidateHub: you don't have enough amount of tokens to become

candidate"

34);

SafeMath.add is called in receive function of CandidateHub contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 5) are shown above.

13 using SafeMath for uint256;

SafeMath library is used for uint256 type in BXP20SystemRewardToken contract.

38 _delegatedAmount[validatorAccount] =

_delegatedAmount[validatorAccount].add(rewardShareAmount);

SafeMath.add is called in increaseDelegatedAmountFor function of DelegatorHub contract.

BFG-14 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709915

Note: Only a sample of 2 SafeMath library usage in this contract (out of 10) are shown above.

15 using SafeMath for uint256;

SafeMath library is used for uint256 type in PollHub contract.

109 reward = reward.add(blockReward.mul(REWARD_HALVING_AFTER_BLOCKS));

SafeMath.mul is called in mintedWith function of NodeHub contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 17) are shown above.

15 using SafeMath for uint256;

SafeMath library is used for uint256 type in PollHub contract.

Note: Only a sample of 1 SafeMath library usage in this contract (out of 2) are shown above.

15 using SafeMath for uint256;

SafeMath library is used for uint256 type in PollHub contract.

171 uint256 fee = amountOfVote.mul(pollCreatorFee).div(10000);

SafeMath.mul is called in vote function of PollHub contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 7) are shown above.

12 using SafeMath for uint256;

SafeMath library is used for uint256 type in SlashingHub contract.

41 _timesSlashed[account] = _timesSlashed[account].mul(2);

SafeMath.mul is called in slash function of SlashingHub contract.

BFG-14 BLACKFORT GROUP

17 using SafeMath for uint256;

SafeMath library is used for uint256 type in System contract.

69 uint256 validatorBondedReward =

amount.mul(selfBonded).div(SafeMath.add(selfBonded, delegated));

SafeMath.mul is called in receive function of System contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 11) are shown above.

13 using SafeMath for uint256;

SafeMath library is used for uint256 type in BXP20SystemRewardToken contract.

37 _selfBondedAmount[msg.sender] =

_selfBondedAmount[msg.sender].add(msg.value);

SafeMath.add is called in receive function of ValidatorHub contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 7) are shown above.

13 using SafeMath for uint256;

SafeMath library is used for uint256 type in BXP20SystemRewardToken contract.

30 return SafeMath.sub((uint256)((int256)(mintedBy(account)) +

_balances[account]), burnedBy(account));

SafeMath.sub is called in balanceOf function of BXP20SystemRewardToken contract.

Note: Only a sample of 2 SafeMath library usage in this contract (out of 9) are shown above.

Recommendation

We recommend removing the usage of SafeMath library and using the built-in arithmetic operations provided by the Solidity

programming language.

Alleviation

BFG-14 BLACKFORT GROUP

[CertiK] : The team heeded the recommendation and made the changes outlined above in commit

842633cc720448c2cc25dbbd7d23649d39c49832.

BFG-14 BLACKFORT GROUP

https://github.com/BlackFortGroup/blackfort-network/commit/842633cc720448c2cc25dbbd7d23649d39c49832

BFG-15 NON-ADHERENCE TO AccessControl INSTRUCTIONS

Category Severity Location Status

Gas Optimization,

Control Flow
Optimization

contracts/AccessControlHub.sol: 40~41; contracts/e

xtensions/SystemAccess.sol: 44~45
Acknowledged

Description

The method for checking an address has a role is set up to use a string input in the function hasRole() within

SystemAccess . This function calls into AccessControlHub which inherits from OpenZeppelin's AccessControl contract.

The function hasStringRole() in AccessControlHub calls hasRole() from AccessControl by first taking the string

input role , converting it to bytes, then applying keccak256 hash to the outcome.

This method is inefficient since this conversion must take place each time a privileged role is checked in a contract that

inherits from SystemAccess . Worse, there could be unforeseen vulnerabilities as a result of bypassing the instructions for

set up in AccessControl .

Recommendation

We recommend the client follow the outline for set up in the AccessControl base contract to ensure gas optimization and

security for privileged functions. This includes setting up roles as public constants within the derived contract as follows:

bytes32 public constant MY_ROLE = keccak256("MY_ROLE");

Alleviation

[CertiK] : The team acknowledges the finding and opts to make no change.

[BlackFort Group] : "The idea of AccessControlHub is to manage roles across differentcontracts in one place without a

mess. Also it makes easier to do role checks in the code while development"

BFG-15 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659622677743

BXA-02 MULTIPLE CHECKS AN ADDRESS IS NOT IN BLACKLIST

Category Severity Location Status

Gas Optimization Optimization contracts/BXP/BXP20Asset.sol: 71, 75, 83 Resolved

Description

The hook _beforeTokenTransfer() is called inside transfers, mints, and burns of the token asset. Thus, when mint() or

burn() is called for this function, the notInBlackList() modifier is checked twice for the to address and from

address respectively.

Recommendation

We recommend removing the modifier notInBlackList(account) on the mint() and burn() functions since it is

checked within the hook in the internal functions.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

a61e9bc0c2599257744398b682d0d695f448103b.

BXA-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659564949130
https://github.com/BlackFortGroup/blackfort-network/commit/a61e9bc0c2599257744398b682d0d695f448103b

DHB-02 UNUSED STATE VARIABLE

Category Severity Location Status

Gas Optimization Optimization contracts/DelegatorHub.sol: 22 Resolved

Description

Variable _delegatorShares in DelegatorHub is never used in DelegatorHub .

22 mapping (address => uint256) private _delegatorShares;

15 contract DelegatorHub is IDelegatorHub, BXP20SystemRewardToken {

Recommendation

We recommend the client remove the unused variables.

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

ffbfafacec44687b93b32db4e1c3c85fb324fd81.

DHB-02 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1657571709917
https://github.com/BlackFortGroup/blackfort-network/commit/ffbfafacec44687b93b32db4e1c3c85fb324fd81

NHB-03 constructor SETS _initialized TO true ON DEPLOY

Category Severity Location Status

Gas Optimization Optimization contracts/NodeHub.sol: 54~55, 59~60, 67~68 Resolved

Description

On deployment of the contract, the function init() is called (which can only be executed when _initialized = false)

and updates the storage variable _initialized to true . This storage variable cannot be updated after deployment. As

such, there is no period of time after deployment of the contract in which _initialized is false, making the check from the

modifier isInitialized unnecessary.

Recommendation

We recommend removing the modifier to optimize the code. Moreover, since init() is called in the constructor and

cannot be called again, we recommend moving the function logic of init() to the constructor and removing the

init() function.

Alleviation

[CertiK] : See the team's explanation of the design choice below.

[BlackFort Group] : "Constructor is reqiured for development purposes, while init() is used for initialization on chain when

contract is deployed in genesis-block."

NHB-03 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659640521343

PHB-07 MODIFIER pollExists CHECKED TWICE IN FUNCTION

CALL

Category Severity Location Status

Gas Optimization Optimization contracts/PollHub.sol: 122~123 Resolved

Description

The modifier pollExists is checked twice: once directly in the function optionOfPollByIndex and a second time within

the modifier optionExists when it calls optionsCountOf() .

Recommendation

We recommend removing the modifier pollExists from the function optionOfPollByIndex() since it will be checked in

the modifier optionExists .

Alleviation

[BlackFort Group] : Issue acknowledged. Changes have been reflected in the commit hash

300c71671f1cfeeb408b4b2b4489ee35d1315e06.

PHB-07 BLACKFORT GROUP

https://canary.accelerator.audit.certikpowered.info/project/30f1c780-feda-11ec-882e-ab1dd4a53675/report?fid=1659648677012
https://github.com/BlackFortGroup/blackfort-network/commit/300c71671f1cfeeb408b4b2b4489ee35d1315e06

FORMAL VERIFICATION BLACKFORT GROUP

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

Property Name Title

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-never-return-false Function transfer Never Returns false

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

FORMAL VERIFICATION BLACKFORT GROUP

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-allowance-correct-value Function allowance Returns Correct Value

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

FORMAL VERIFICATION BLACKFORT GROUP

Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see

scope) are valid:

Contract DelegatorHub (Source File contracts/DelegatorHub.sol)

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-false True

erc20-approve-change-state True

erc20-approve-never-return-false True

Contract ValidatorHub (Source File contracts/ValidatorHub.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract BXP20SystemRewardToken (Source File
contracts/extensions/BXP20SystemRewardToken.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract BXP20 (Source File contracts/BXP/BXP20.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-change-state True

erc20-allowance-correct-value True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-succeed-normal True

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract WBXN (Source File contracts/BXP/WBXN.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount True

erc20-transfer-change-state True

erc20-transfer-correct-amount-self True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-self True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

FORMAL VERIFICATION BLACKFORT GROUP

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid".
The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Contract BXP20Asset (Source File contracts/BXP/BXP20Asset.sol)

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-never-return-false Inconclusive

erc20-transfer-false Inconclusive

erc20-transfer-revert-zero Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-exceed-balance Inconclusive

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-to-zero Inconclusive

erc20-transferfrom-revert-from-zero Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-exceed-allowance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

erc20-transferfrom-never-return-false Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract BXP721 (Source File contracts/BXP/BXP721.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inapplicable

erc20-transfer-succeed-normal Inapplicable

erc20-transfer-succeed-self Inapplicable

erc20-transfer-correct-amount Inapplicable

erc20-transfer-correct-amount-self Inapplicable

erc20-transfer-change-state Inapplicable

erc20-transfer-exceed-balance Inapplicable

erc20-transfer-recipient-overflow Inapplicable

erc20-transfer-false Inapplicable

erc20-transfer-never-return-false Inapplicable

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-succeed-normal Inapplicable

erc20-transferfrom-succeed-self Inapplicable

erc20-transferfrom-correct-allowance Inapplicable

erc20-transferfrom-change-state Inapplicable

erc20-transferfrom-fail-exceed-allowance Inapplicable

erc20-transferfrom-false Inapplicable

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always Inapplicable

erc20-totalsupply-correct-value Inapplicable

erc20-totalsupply-change-state Inapplicable

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state Inapplicable

erc20-balanceof-correct-value True

erc20-balanceof-succeed-always Inapplicable Intended behavior

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always Inapplicable

erc20-allowance-correct-value Inapplicable

erc20-allowance-change-state Inapplicable

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-correct-amount Inapplicable

erc20-approve-change-state Inapplicable

erc20-approve-false Inapplicable

Contract BXP721Enumerable (Source File contracts/BXP/BXP721Enumerable.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inapplicable

erc20-transfer-succeed-normal Inapplicable

erc20-transfer-succeed-self Inapplicable

erc20-transfer-correct-amount Inapplicable

erc20-transfer-correct-amount-self Inapplicable

erc20-transfer-change-state Inapplicable

erc20-transfer-exceed-balance Inapplicable

erc20-transfer-recipient-overflow Inapplicable

erc20-transfer-false Inapplicable

erc20-transfer-never-return-false Inapplicable

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-succeed-normal Inapplicable

erc20-transferfrom-succeed-self Inapplicable

erc20-transferfrom-correct-allowance Inapplicable

erc20-transferfrom-change-state Inapplicable

erc20-transferfrom-fail-exceed-allowance Inapplicable

erc20-transferfrom-false Inapplicable

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-correct-value Inapplicable

erc20-totalsupply-change-state Inapplicable

erc20-totalsupply-succeed-always True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state Inapplicable

erc20-balanceof-correct-value True

erc20-balanceof-succeed-always Inapplicable Intended behavior

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always Inapplicable

erc20-allowance-correct-value Inapplicable

erc20-allowance-change-state Inapplicable

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-correct-amount Inapplicable

erc20-approve-change-state Inapplicable

erc20-approve-false Inapplicable

Contract PollHub (Source File contracts/PollHub.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inapplicable

erc20-transfer-succeed-normal Inapplicable

erc20-transfer-succeed-self Inapplicable

erc20-transfer-correct-amount Inapplicable

erc20-transfer-correct-amount-self Inapplicable

erc20-transfer-change-state Inapplicable

erc20-transfer-exceed-balance Inapplicable

erc20-transfer-recipient-overflow Inapplicable

erc20-transfer-false Inapplicable

erc20-transfer-never-return-false Inapplicable

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-succeed-normal Inapplicable

erc20-transferfrom-succeed-self Inapplicable

erc20-transferfrom-correct-allowance Inapplicable

erc20-transferfrom-change-state Inapplicable

erc20-transferfrom-fail-exceed-allowance Inapplicable

erc20-transferfrom-false Inapplicable

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-correct-value Inapplicable

erc20-totalsupply-change-state Inapplicable

erc20-totalsupply-succeed-always True

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state Inapplicable

erc20-balanceof-correct-value True

erc20-balanceof-succeed-always Inapplicable Intended behavior

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always Inapplicable

erc20-allowance-correct-value Inapplicable

erc20-allowance-change-state Inapplicable

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-correct-amount Inapplicable

erc20-approve-change-state Inapplicable

erc20-approve-false Inapplicable

Contract BlackList (Source File contracts/BXP/BXP20Asset.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-false Inconclusive

erc20-transfer-never-return-false Inconclusive

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-to-zero Inconclusive

erc20-transferfrom-revert-from-zero Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-fail-exceed-allowance Inconclusive

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

erc20-transferfrom-never-return-false Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract Manageable (Source File contracts/BXP/BXP20Asset.sol)

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero Inconclusive

erc20-transfer-succeed-normal Inconclusive

erc20-transfer-succeed-self Inconclusive

erc20-transfer-correct-amount Inconclusive

erc20-transfer-correct-amount-self Inconclusive

erc20-transfer-change-state Inconclusive

erc20-transfer-exceed-balance Inconclusive

erc20-transfer-recipient-overflow Inconclusive

erc20-transfer-false Inconclusive

erc20-transfer-never-return-false Inconclusive

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero Inconclusive

erc20-transferfrom-revert-to-zero Inconclusive

erc20-transferfrom-succeed-normal Inconclusive

erc20-transferfrom-succeed-self Inconclusive

erc20-transferfrom-correct-amount-self Inconclusive

erc20-transferfrom-correct-amount Inconclusive

erc20-transferfrom-correct-allowance Inconclusive

erc20-transferfrom-change-state Inconclusive

erc20-transferfrom-fail-exceed-balance Inconclusive

erc20-transferfrom-fail-exceed-allowance Inconclusive

erc20-transferfrom-fail-recipient-overflow Inconclusive

erc20-transferfrom-false Inconclusive

erc20-transferfrom-never-return-false Inconclusive

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BLACKFORT GROUP

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION BLACKFORT GROUP

APPENDIX BLACKFORT GROUP

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow
Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in-storage one.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Compiler

Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

APPENDIX BLACKFORT GROUP

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BLACKFORT GROUP

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER BLACKFORT GROUP

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BLACKFORT GROUP

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

BlackFort Group Security Assessment CertiK Verified on Oct 13th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

